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Abstract. The management of health systems has been one of the main
challenges in several countries, especially where the aging population is
increasing. This led to the adoption of smarter technologies as means to
automate, and optimize processes within hospitals. One of the technolo-
gies adopted is active location tracking, which allows the staff within the
hospital to quickly locate any sort of entity, from key persons to patients
or equipment. In this work, we focus on exploring ML models to develop a
reliable method for active indoor location tracking based on off the shelf
RFID antennas with UHF passive tags. The presented work describes
the full development of the solution, from the initial development made
within a controlled environment, to the final evaluation made on a real
health clinic. The proposed solution was able to achieved 0.47meters on
average on a complex medical environment, with unmodified hardware.

Keywords: Indoor Location · Machine Learning · Passive RFID tag ·
Regression Models

1 Introduction

A fundamental governance concern is the administration of healthcare systems
and their economic viability, particularly in nations dealing with an increasingly
sizable ageing population. Hospitals and clinical centres are actively looking for
novel approaches to improve service efficiency, cut costs, and improve patient
happiness due to the soaring patient numbers and the difficulties in matching
annual budgets with this expansion. Some hospitals are starting to use active
localization technology like Radio Frequency Identification (RFID) Radio Fre-
quency Identification (RFID) [6,11] to expedite these procedures. Utilising Radio
Frequency (RF) technologies makes it possible to track the location and use of
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medical equipment, keep tabs on the inventory and distribution of patient pre-
scriptions, and even keep track of patient mobility across hospital departments.

The main goal of this study was to look into various approaches for indoor
resource localization using Ultra High Frequency (UHF) passive tags while stick-
ing to certain restrictions. Rapid response times, pinpoint location accuracy,
minimal data requirements for each prediction (to reduce power consumption
by components of the RFID radios), and, most importantly, compatibility with
readily available, unaltered off-the-shelf hardware were all requirements that the
models developed in this research had to meet. This study is a component of a
larger initiative to create an inexpensive indoor positioning system using widely
available RFID antennas and tags.

In this work, we studied how Machine Learning (ML) models can be used
to predict asset locations by utilising passive tags. Our study expands on earlier
study that examined related hardware in a controlled environment and produced
encouraging results [8]. The main innovation in this study focuses on the evalu-
ation of the previous approach using actual data acquired from a medical clinic.
In addition, we have added improvements to the system’s functionality that have
been verified through practical testing in a clinical setting.

The remaining document is organized as follows. Section 2 described the cur-
rent state of the art for active indoor location. The following section (Section 3)
describes the hardware used in the execution of this study. Section 4 presents the
previous proposed solution, that serves as the basis for this work. In Section 5
we describe the real-word scenario where the antennas where deployed. The new
models (and the main contribution of this work) are presented in Section 6.
Finally, the conclusion can be found on Section 7.

2 State of the Art

Due to their wide range of technological capabilities and the significant value
they provide to numerous business sectors, Indoor Positioning System (IPS)
have seen a rise in popularity over the previous two decades.

There are multiple techniques used in location systems, such as multilatera-
tion [1], angulation [7], fingerprinting [10] and others. These techniques require
some information provided by the antennas and tags used, like the Time of
Arrival (ToA) [9], Angle of Arrival (AoA) [15] and Received Signal Strength In-
dication (RSSI) [4]. The tags used in these systems can be active or passive, but
they often require unique design and are not widely available in products from
the main stream market. They are mostly present in specialised products and
research projects. We will go into more detail about the most pertinent works
that offer remedies for situations that are similar in the parts that follow.

SpotON [4] is a location system that uses RSSI to locate active RFID tags
in a three-dimensional space. LANDMARC [5] is a system that also reflects the
relationship between RSSI and power levels, and makes use of reference tags and
the K-NN algorithm to estimate positions. Results show an accuracy of 2m and
a location delay of 7.5 s. In [10] Dwi et al. propose a fingerprinting based po-
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sitioning system using a Random Forest (RF) algorithm and RSSI data, which
achieved an error of 0.5m, which is 18% lower than the compared Euclidean
distance method. In [2], Lummanee et al. compare the performance of a Gradi-
ent Boosting algorithm to a typical Decision Tree (DT) applied in a positioning
system. The experiment was based on a 324m2 area divided in 9 zones. The DT
based Gradient Boosting algorithm achieved an estimation error of 0.754m for
19 reference radio signals at 50 samples per zone, 17.8% more accurate than the
typical DT. In [3] Jae et al. developed a passive RFID based localization system
which uses RSSI information and reference tags to predict one-dimensional po-
sition of the asset. It achieves an error of 0.2089m using the K-NN technique in
a 3m space.

These methods are mainly based on RSSI, which has the disadvantage of
suffering greatly from attenuation due to internal obstacles and dynamic envi-
ronments. Unlike SpotON and LANDMARC, the approach in [14] by Wilson
et al. does not depend on RSSI, however, is based on the same RSSI princi-
ples. This research work is based on passive RSSI technology. Two scenarios of
stationary and mobile RSSI tags are considered. The method gives tag count
percentages for various signal attenuation conditions. The tags are located by
recording characteristic curves of readings under different attenuation values at
multiple locations in an environment. Similarly, Vorst et al. [12] use passive
RFID tags and an onboard reader to locate mobile objects. Particle Filter (PF)
technique is exploited to estimate the location from a prior learned probabilistic
model, achieving a precision of 0.20–0.26m.

By carefully designing and validating ML models, we in our work take into
consideration these earlier research initiatives and increase the precision of our
earlier work.

3 RFID Antenna Description

Given the environment where this work has developed, the hardware was pre-
selected (as seen in Figure 1). The antenna part is composed of two units (pro-
cessing + radio), that communicate with each other through a physical bus
(RS232, RS485 or Ethernet). The local processing unit was designed to commu-
nicate through Long Term Evolution (LTE) and Ethernet, exposing the radio
frontend to the backend systems. It is powered through a 230V Alternating Cur-
rent (AC) power supply and uses an Advanced RISC Machine (ARM) processor
running a GNU/Linux operating system (for low power consumption).

The antenna model used in our system is pretty typical and is used exactly
as the manufacturer intended it to be, without any special firmware alterations.
This decision lowers the cost of the system while also improving usability and
accessibility. But there is a catch: the antenna’s processing power or the data it
transmits might not be at their best. The vendor claims that the firmware level
automatically compensates for gain in order to aid in the detection of passive
tags. However, this compensation has a substantial impact on how well it fits
our planned scenario. Our work’s main goal is to offer value by providing an
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effective indoor positioning solution, even when using unmodified hardware. It
is important to keep in mind that, in the hypothetical situation, more reliable
alternatives utilising active tags quickly exceed the average cost per patient,
making them unworkable.

Fig. 1: Smart Antenna and passive RFID tags used for data gathering [8].

The communication between the antenna and the tags is made through a
carrier wave in the 865–868MHz (UHF) frequency range as defined in the EN
302 208 v3.2.0 4 directive for the European region, and cannot exceed 2W emis-
sion power. In this way, the antenna controller allows the RF emission power
adjustment 0–300mW, allowing readings up to 25m and writings up to 6m ac-
cording to the manufacturer. The antenna polarization is circular with a gain
of 12 dBi. The controller uses the Impinj R2000 chipset supporting the EPC
C1 GEN2 protocol 5, ISO18000-6C 6 (see Table 1). This setup should be one of
the most commonly used, as the hardware and chipset are commonly used for
similar tasks. We see this as a major contribution from our work, as the output
can be applied to a wide set of existing or future, deployments.

The real-time communication with the smart antenna is achieved using an
MQTT broker, over which we implemented a key set of control functions: a)
Definition of emission power of the antenna; b) Tag reading request over a time

4 https://www.etsi.org/deliver/etsi_en/302200_302299/302208/03.02.00_20/

en_302208v030200a.pdf
5 https://www.gs1.org/standards/rfid/uhf-air-interface-protocol
6 https://www.iso.org/standard/59644.html

https://www.etsi.org/deliver/etsi_en/302200_302299/302208/03.02.00_20/en_302208v030200a.pdf
https://www.etsi.org/deliver/etsi_en/302200_302299/302208/03.02.00_20/en_302208v030200a.pdf
https://www.gs1.org/standards/rfid/uhf-air-interface-protocol
https://www.iso.org/standard/59644.html
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Table 1: Specification of the RFID UHF reader and writer [8].

Product Parameter Parameter Description

Model ACM818A UHF (20M)
Tag Protocol EPC C1 GEN2 \

ISO 18000-6C
Output Power Step interval 1.0dB,

maximum +30dBm
RF Power Output 0.1W - 1W
Built-in Antenna 12dbi linear polarization
Type antenna
Communication Ports 1) RS-232 2) RS-485

3) Wiegand 26 \ 32 bits
Communication Rates 115200bps
Reading/Writing 20m
Multi-tags Reading 200tags/s
Working Voltage DC +12V

window (burst); c) Return data obtained at the end of the reading; d) Direct
interaction with an antenna to manage it.

4 Previous Solution

This works expands on a previous one [8], which explored the same hardware
but on a controlled environment. In this section we present a brief summary of
the results achieved from our previous solution, which we expanded in this new
work. Both works share the same environment, requirements, and the approach
of using ML to provide usefulness to off the shelf hardware.

To achieve the previous solution we run three experiments to determine the
best input features and ML model for location prediction.

Regarding the input features, we considered two different ones, apart from
the typical RSSI, the number of tag activation’s and the average time between
activation’s were also considered. Our results showed that these input features
were robust and improved greatly the precision of the location solution.

Furthermore, we explored the usage of anchor points (static tags with well
known location) for model evaluation and continuously training in a dynamic
environment.

Finally, we were able to establish the baseline values to the models precision
on a controlled environment. Our results were aligned with the state of the art,
the solution obtained an error of 0.00m within a range of 5m and an error of
0.55m within a range of 10m, resulting in an average error of 0.275m.
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5 Scenario

As previously mentioned, the previous solution was developed based on three
experiments conducted in a controlled environment. This works is aligned with
a National Project, as such we had access to a real health center were five
antennas, and eighteen anchor were deployed. Figure 2) depicts the location of
the antennas and anchors in our real-world scenario.

Fig. 2: The location of the antennas and anchor tags.

With this placement, the next step was to choose the best powers to generate
our dataset. We want to maximize the model precision, but also wanted to
increase the maximum number of tags detected. Due to latency and processing
constrains we are limited to query with two power levels. After emitting a signal
at the specified power level, we wait three seconds for tags responses. Querying
more than two power levels would increase the latency of the system, which
would impact the remaining components. Moreover, the connection system will
need to store all tag activations detected during the scanning period, which
presents a processing, memory and communication burden.

To achieve this analysis we collected data from all power levels for three
days straight. We created a dataset with each single power level, and all the
combinations of two power levels. Using those datasets we trained the best model
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from the previous work (Random Forest), and computed the Mean Absolute
Error (MAE) for each dataset. Since this is a regression problem, we want to
minimize the MAE, and at the same time maximize the number of tags detected.
As such, the metrics score that we considered in this analysis is the subtraction
the normalized MAE from normalized count of tags.

Figure 3 depicts the results of our analysis. In the diagonal, we can see the
values of single power levels, while the remaining cells contains the metric value
for each pair of power levels. It is possible to observe, that the pair [210, 300]mW
offers the lowest error, while it captures the largest number of tags. Effectively,
300mWwill get all tags possible (max power), while 210mWwill provide distance
discrimination.

Fig. 3: Result of the power levels analysis impact on performance

The dataset that will be used to train the ML models are distributed in
the following way (as depicted in Figure 4), and had 68368 rows, each row
representing a tag that was read by some antenna.

As shown in Figure 4, the distribution of samples is not uniform for all
distances, which is not the ideal, as it introduces a bias within the models.
However, the major of the distances have a very good distribution (between 6.5%
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Fig. 4: Dataset Distribution

and 7.9%). To recap, we placed eighteen anchors that are able to produce twenty
three different distances. This is possible as there are some overlaps between
antennas, increasing the number of effective distances for a given set of anchor
tags.

6 Evolved Solution

We started by applying the ML models from the previous work, in the real-world
scenario, as it showed capabilities without our requirements. These models would
serve as a baseline performance for the system in a real environment. Given that
there was a considerable increase in the models error, we applied two different
pre-processing methods to clean the dataset and improve the model capabilities.

The first pre-processing method was simple applying Interquartile Range
(IQR) to filter out the outliers. IQR is a measure of statistical dispersion, it is
an example of a trimmed estimator, which improves the quality of the of dataset
by dropping lower contribution samples.

The second pre-processing method implies the usage of an AutoEncoder (AE)
to compress the original dataset into a smaller one, by reducing the number
of input features per sample. The main advantage of this approach is that it
does not removes any samples from the dataset (opposite to the outlier removal
method from the previous approach). The main disadvantage is the necessity of
training the AE.

These pre-processing approaches were taken into account due to the signifi-
cant level of noise present in the dataset, which was not present in the controlled
environment. The noise level in the real-world dataset can be explained by two
factors. First, is the clinical environment itself. As a working environment, it
contains equipment, its own Wi-Fi network, and other components that can in-
terfere with the propagation of the signal emitted by the localization antennas.
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Second, is related to the utilization of tags by the staff and users of the
space. Although instructions were provided on how to use the tags, there are no
guarantees that the tags will always be in the optimal positions for their reading.
Actually, they will almost never be in such situation, as they reside in patient
and staff members pockets, purses or backpacks.

In order to mitigate this noise, we implemented these additional approaches
with the aim of refining the data quality, while minimizing the impact of external
influences.

Three metrics were used to evaluate the performance of the models: Mean
Squared Error (MSE), MAE, and Coefficient of Determination (R2). The first
two are dissimilarity metrics, meaning that the lower the value, the better the
result. The later is a similarity metric, meaning that the closer it is to 1, the
better the result is.

6.1 Baseline

The first step was to evaluate the models previously developed. This means,
using the models without applying any additional process to handle the new
dataset. The results of the models can be found in Table 2.

Table 2: Baseline performance metrics

Model MSE MAE R2

LinearRegression 5.62 1.86 0.23
DecisionTree 1.64 0.57 0.78
RandomForest 2.23 1.03 0.70
KNeighbors 1.87 0.59 0.75
XGBoost 1.50 0.58 0.80
Voting Model 2.01 0.98 0.73

As presented in Table 2 the best possible value is 0.57 (MAE) achieved by
the DT model. This represents a performance decrease compared to the best
model from the previous work by an average of 0.02m.

To better understand the model perform at different ranges, we computed
the MAE for the best model (DT) at each possible distance and plotted them
in the following histogram (see Figure 5).

Through an analysis of the figures, we could observe that the model tends
to make more errors in distances where there is less data, for distances greater
than approximately 4m. Comparing this with the distribution of the dataset
(Figure 4), it is quite noticeable.

6.2 First pre-processing: IQR

The first approach to reduce the natural noise in the dataset was to apply the
IQR outlier filtering method. This method calculates all the values between
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Fig. 5: MAE histogram at different ranges from the best baseline models (DT).

the first quartile (Q1) and the third quartile (Q3), giving more importance to
the inner 50% of the data and eliminating the majority of outliers. The con-
stant value used was 1.5, which is used to establish a threshold that determines
how far the data can be considered ”far” from the median. This value (1.5) is
based on Tukey’s fence, allowing for sensitive identification of potential outliers
while remaining relatively conservative. The idea behind exploring the removal
of outliers (data points with significantly different characteristics from what is
considered normal) is to obtain a cleaner dataset.

With this approach pre-processing, we obtain the results presented in Table 3.

Table 3: IQR performance metrics

Model MSE MAE R2

LinearRegression 4.19 1.60 0.44
DecisionTree 1.27 0.47 0.83
RandomForest 1.88 0.94 0.75
KNeighbors 1.60 0.51 0.79
XGBoost 1.17 0.48 0.84
Voting Model 1.61 0.83 0.79

As we can see in table 3 the best possible value is 0.47 (MAE) achieved by
the DT model. This represents a performance increase compared to the best
model from the initial training by an average of 0.1 meters.

To better understand the model with the highest perform in this approach
(DT) at different ranges, we computed the MAE for each possible distance and
plotted them in the following histogram (see Figure 6).

As in the previously approach (Baseline), it is evident that the model exhibits
a higher error rate in distances with few data, particularly for distances exceeding
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Fig. 6: MAE histogram at different ranges from the IQR best models (DT).

approximately 4m. This is aligned with the distribution of samples per range of
the acquired dataset (as seen in Figure 4).

6.3 Second pre-processing: AutoEncoder

We also implemented an AutoEncoder (AE) [13] for feature reduction. An Au-
toEncoder is a neural network that compresses the input data into a lower-
dimensional representation, and then reconstructs it from that lower dimension.

This network is composed of two different blocks, the encoder and the de-
coder. The encoder is a initial part of the network that compresses the input into
a latent space with a smaller dimension. The decoder tries to reconstruct the
input signal from the constrained latent space. The network is trained on the in-
put data, while trying to reproduce it using a constrained latent space. The loss
function is the difference between the input features and the reconstructed fea-
tures. After an initial training phase, we only use the encoder part of the network
to compress the input features into a lower-dimensional called latent space. One
consequence of compressing the input features into a lower-dimensional latent
space is the reduction of noise in the input signals.

After training the AutoEncoder, we simple use the encoder part of the net-
work to transform the dataset into a new one on the constrained latent space.
As previously mentioned, with reduced noise levels. After we just apply the ML
models naturally.

With this pre-processing method, we obtained the results presented in Ta-
ble 4.

As we can see in Table 4 the best possible value is 0.64 (MAE) achieved by
the K-Nearest Neighbors (K-NN) model. This represents a performance decrease
compared to the best model from the initial training by an average of 0.07m,
and a performance decrease compared to the results in the IQR approach by
0.17m.
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Table 4: AutoEncoder performance metrics

Model MSE MAE R2

LinearRegression 5.70 1.93 0.22
DecisionTree 2.71 1.02 0.64
RandomForest 3.15 1.27 0.57
KNeighbors 2.05 0.64 0.72
XGBoost 2.05 0.84 0.72
Voting Model 2.49 1.14 0.66

In order to better understand how the best model performs (K-NN model)
in the existing ranges, we plotted it (see Figure 7), similarly to the previous
approaches.

Fig. 7: MAE histogram at different ranges from the AE best model (K-NN).

Similarly to the previous two approaches (baseline and IQR) it is apparent
that the model demonstrates increased error rates in ranges where training data
is limited. Again, especially visible for distances greater than approximately 4m,
and aligned with the distribution of samples per range of the acquired datasets.

7 Conclusion

The management of health systems has been one of the main challenges in several
European countries, especially where the ageing population is increasing. One of
the technologies adopted is active location solutions, which allows the staff within
the hospital to quickly find any sort of entity, from key persons to equipment.

In this work, we evaluated the usage of dedicated hardware (namely the RF
antenna) for indoor location within a medical environment. From a previous
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work we devise two new feature (number of activation’s and the average time
of activation’s for passive tags) that in conjunction with RSSI produce models
that are more robust. We also established a performance based, based on data
acquired on a controlled environment.

The current work is aligned with collaboration with medical entities, and as
such we were able to acquired data in a real-world health clinic.

In this work, we present the details of the scenario, and how we selected
the ideal power levels to explore with the antennas. It is a compromise between
the amount of data acquired from the antennas and the latency of the overall
system.

Following that, we evaluated the previous solution to compare the current
results with the previous ones. Simply applying the previous models lead to a
decrease of 0.02meters in performance, when taking into account the best ML
models.

Our analysis show an increase noise level within the dataset. That noise is a
consequence of the environment itself, arising from moving people, sub-optimal
tag location and orientation and othre interference. To deal with this we applied
two different pre-processing approaches: outlier removal with IQR and noise
reduction with AutoEncoder.

The approach based on IQR was able to improve the results, achiving an
MAE of 0.47. While the approach based on AutoEncoder did not improve the
results. It is worth mentioning that further research on this is required, as the
IQR based method reduces the dataset size (rows), while the AutoEncoder trans-
forms it into another dimensional space (reduces the number of columns). Is is
possible, that with a larger dataset, we could see some gains on the approach
based on AutoEncoder.

Finally, we want to mention that for all the proposed approaches, the MAE
per range was correlated with the amount of data that we had for that specific
range. This can lead us to increase the number of passive anchors (tags with well
known location) to improve the continuous training of the models.
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