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Abstract

This work describes an open-source indoor location emulator, based on a
modular approach, with loosely coupled components, fitting multiple simul-
taneous location technologies, with a focus in the evaluation and training
of Machine Learning methods. The work was implemented on top of the
MQTT protocol, leading to a decoupled architecture that can easily be ex-
tended for several purposes, including integration of real and virtual devices.
The emulator supports active and passive radio scenarios, including Wi-Fi
and UHF RFID tags. The emulator is intended on underlying principles
such as reusability and extensibility. The current implementation was used
to evaluate an indoor location solution within a health environments with
custom routes and different personnel.
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Code Metadata

Nr. Code metadata description
C1 Current code version v1.0.0
C2 Permanent link to code/repository

used for this code version
https://github.com/ATNoG/

indoor-location-emulator

C3 Code Ocean compute capsule
C4 Legal Code License MIT License
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
HTML, CSS, JavaScript includ-
ing some libraries (mapbox-gl.js,
paho-mqtt.js, turf.js, map-gl-
indoor), Python including multiple
libraries for each module (see re-
quirements.txt files on repository),
Mosquitto MQTT broker, docker,
docker-compose.

C7 Compilation requirements, operat-
ing environments & dependencies

Linux / Mac OS / Microsoft Win-
dows with Windows Subsystem for
Linux (WSL), virtual-environments,
docker, docker-compose, modern
web browsers that support WebGL.
See https://atnog.github.io/

indoor-location-emulator/ for
details.

C8 If available Link to developer docu-
mentation/manual

https://atnog.github.io/

indoor-location-emulator/

C9 Support email for questions rjfae@av.it.pt,
mario.antunes@av.it.pt, jpbar-
raca@av.it.pt

Table 1: Code metadata
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Software Metadata

Nr. (Executable) software meta-
data description

S1 Current software version v1.0.0
S2 Permanent link to executable bina-

ries of this version
https://github.com/ATNoG/

indoor-location-emulator

S3 Permanent link to Reproducible
Capsule

S4 Legal Software License MIT License
S5 Computing platforms/Operating

Systems
Modern web browsers that support
WebGL, docker, docker-compose.

S6 Installation requirements & depen-
dencies

See https://atnog.github.io/

indoor-location-emulator/ for
details.

S7 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

See https://atnog.github.io/

indoor-location-emulator/ for
details.

S8 Support email for questions rjfae@av.it.pt,
mario.antunes@av.it.pt, jpbar-
raca@ua.pt

Table 2: Software metadata

1. Motivation and significance

Information and Communications Technology (ICT) have undergone a
natural evolution, aimed at improving people’s quality of life. Currently,
there has been a growing interest in systems capable of determining a user’s
location and providing services using this information [1, 2, 3, 4]. These
systems are called Location Based Services (LBS) are characterised by the
information or interface they present to the user is usually determined by the
user’s physical location. Generally integrates wireless and positioning tech-
nologies with location information management, providing consumers with
the necessary services based on their geographical location, using Fingerprint
location techniques. These techniques are divided into two phases, the offline
Fingerprint calibration phase and the online location estimation phase [5]. In
the offline phase, a set of Received Signal Strength Indicator (RSSI) values
from various Access Points (APs) at each Reference Point (RP) is collected to
form one of the Fingerprints stored in a database. During the online phase,
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the location of the terminal is obtained using pattern matching algorithms
to compare with the database. The global spread and large increase of new
LBS or context-aware computing, in which accurate target location informa-
tion is required, have driven research in Indoor Positioning System (IPS),
enable a range of location-based indoor tracking solutions, including Real-
Time Location System (RTLS) in different application domains as museums
and tourism [6, 7], gaming and augmented reality [8, 9], mall navigation [10],
hospitals and monitoring of the elderly [11], train stations and airports [12],
logistics or security, and emergency responders [13].

The Global Positioning System (GPS) is the most common technology
used in LBS systems [14], was developed using trilateration techniques to
locate a device in the world. However GPS and other systems based on
trilateration or triangulation, which use time-of-arrival measurement perform
poorly in indoor environment due to Non line-of-sight (NLOS) propagation
effect [15].

There are several different technologies that can be used for indoor posi-
tioning, such as: Proximity-based systems, based on Radio-Frequency Iden-
tification (RFID) tags or beacons [16, 17, 18]; Wireless Local Area Net-
work (WLAN)-based systems (Wi-Fi) [19]; Ultra-Wide-Band (UWB) [20, 21];
Bluetooth-based systems (Bluetooth or Bluetooth Low Energy (BLE)) [22,
23]; Ultrasounds-based systems (Acoustic) [24, 25]; Infrared (IR) [26, 27, 28];
Systems based on cellular networks (Global System for Mobile Communica-
tions (GSM), Code Division Multiple Access (CDMA), Long Term Evolu-
tion (LTE)) [29]. Whereas due to the complexity of internal layout, NLOS
propagation environments, multipath effect and shadow fading [30, 31, 32],
trilateral or triangulation methods, which are based on range or Time-of-
arrival (TOA) angle, Time-difference-of-arrival (TDOA), Received Signal
Strength (RSS) or Angle-of-arrival (AOA) measurements, suffer large loca-
tion estimation errors. In fact, since WLAN techniques have been widely
deployed in office premises and other hotspots, RSS values can be easily
obtained from any Wi-Fi equipped terminal. The RSS-based Fingerprint lo-
cation techniques in indoor WLAN environments have become relevant topic
in research and scientific work [33, 34], in these last few years.

On the other hand, interest is also growing in the development of IPSs
based on passive RFID technology. The main reason to choose RFID, in our
case passive RFID is because passive tags support Backscattering, that is,
they use the energy of the emitter signal to generate the response. So, it’s
not necessary a battery in each tag, as it happens in other technologies, this
reduces substantially its costs (between approximately 0.05 - 0.10 €), focus-
ing the investment in the infrastructure. This is a huge advantage over other
technologies, since it eliminates the need for an entire battery management,
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the antennas can be disposed of in a more viable way. This feature makes
this technology very suitable in a hospital or clinical setting, where there is
a high density of medical equipment and medicines, and where each person
can have their own RFID card or wristband.

This work as the goal of improving the localization of tags in indoor
spaces, and considering infrastructures of the health sector, such as hospi-
tals and clinical centres, where a large number of indicators for assessing
the quality of services provided as well as the management of available re-
sources are evaluated. It results in an open-source indoor location emulator,
which implements modern web technologies for real time visualization, with a
module-based approach of a decoupled architecture, using pluggable Machine
Learning (ML) models, supporting RSSI standards for passive RFID scenar-
ios. It takes into account the lack of similar software solutions capable of
assembling, testing and validating ML solutions for this context, at a low
cost, with loosely coupled patients. The Message Queuing Telemetry Trans-
port (MQTT) protocol was selected as the communication method between
emulator modules. It enable users to upload routes of indoor map locations,
simulate patients / staff movements or equipment location to assemble, test
and validate solutions to predict location accuracy with Machine Learning
models. Also allow users to export the synthetic emulated data, for exam-
ple to create prototypes of digital twins of indoor locations. The emulator is
intended on underlying principles such as reusability and future extensibility.

The work presented is organized as follows: the software architecture of
the indoor location emulator, detailing the architecture of the overall solu-
tion and of the individual modules, describing their functionalities and how
it can be used in the evaluation of new indoor tracking solutions is presented
in Section 2. Next, in Section 3, we present a characterization of the be-
havior observed in a real-world RFID environment. A use case/experimental
scenario, the metrics to be used are described, the results and an analysis of
them are presented in Section 4. Section 5 presents the reference examples.
The rest sections contemplates the evaluated impact of the solution, in Sec-
tion 6, the conclusions and future works, in Section 7 and finally the Conflict
of Interest in carrying out this work, in Section 8.

2. Software Description

The indoor location emulator was developed, to solve a gap in existing
open source solutions, which are vital for research in indoor location: how to
validate indoor location data, train augmentation and prediction ML models,
and visually inspect (or demonstrate) their accuracy with ease, over multiple
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technologies. When researching solutions for this area of research, it is not
always clear which technologies are most suited. In the case of ML based
solutions, it is also not always clear which features should be extracted and
used. For some technologies (e.g. passive RFID), indirect features besides
RSSI may present better datasets to construct models. Augmentation from
multiple indoor location sources is also interesting to explore. Moreover,
both for the purpose of evaluation and demonstration, a visual tool that
integrates the real algorithms developed, presents a very strong use case
for its development. Especially if it uses web technologies, building on the
interaction capabilities of current browsers.

2.1. Software Architecture

The software is composed by a frontend component, a backend, a mqtt
broker, and a number of ml-models calculating or predicting the location
of moving assets (see Figure 1). The models are real software entities, which
can be reused in real scenarios with real devices, or evaluated in a emulated
environment. This allows researchers to refine existing algorithms, and avoids
the need to re-implement algorithms in a simulator specific language, which
significantly speeds up the development cycle.

Figure 1: Schematic diagram of emulator elements.

Users interact directly with the frontend components. These provide
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a 2D visualization of indoor spaces of buildings, where the estimated posi-
tioning of an asset is presented in real time on a dynamic map. So as to
maximize component reusability, and facilitate the evaluation of the location
estimators, we opted by using standard geodesic coordinates (latitude and
longitude). Moreover, we built upon existing web technologies (Mapbox GL
JS 1), to display a map and the assets, which resulted in a interface similar
to other online map solutions running on a browser.

The frontend component, running on the browser uses JavaScript (JS)
code (Vanilla JS) to implement its action logic, over an HyperText Markup
Language (HTML)/Cascading Style Sheets (CSS) page. To further facilitate
development, we opted for using real maps, in standard GeoJSON format as
it would allow loading existing indoor maps, built directly or converted with
tools such as QGIS 2. An open source solution, map-gl-indoor 3, handles
loading of indoor maps into GeoJSON files. Following standard naming
conventions for GeoJSON maps, we can tag map elements with properties
such as “level”, and then walls, stairs or windows, resulting in a map with
richer interaction. As an example, walls will be considered when calculated
radio attenuation, and level information allow the emulator to consider more
complex buildings with multiple levels.

The frontend implements all the interaction logic, providing the inter-
face to users, and interacts with the backend components. These consist
of a HyperText Transfer Protocol (HTTP) based server running a Python
application, which is responsible for most of the data processing, mathemat-
ical calculations, feature augmentation and orchestration of the remaining
components. Most importantly, it creates synthetic data from the current
asset location, which is sent to location models. The result from the location
models is converted into elements suited for display on the map interface.

Interacting with the backend component are the indoor location models.
In our case, the purpose was to evaluate ML models, over an undetermined
number of features, resulting in us naming these as ml-models implemented
in Python.

The communication between the modules is ensured by the MQTT proto-
col over WebSockets (mosquitto) 4, and JavaScript Object Notation (JSON)
messages, subscribing and publishing information through topics. This same
approach is followed to interact with the location models, thus allowing a
very high level of decoupling between the different components. If researchers

1https://mapbox.com
2https://qgis.org/
3https://github.com/map-gl-indoor/map-gl-indoor
4https://mosquitto.org/
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which to develop aditional indoor location technologies, as long as they re-
spect the message interface, any language, technology or approach can be
used, without imposing changes to the remaining components. Actually,
multiple location modules, in different languages can coexist in the same
emulation session.

2.2. Software Functionalities

The main characteristics of frontend module consist of: The implemen-
tation of a MQTT client for communication (paho-mqtt library 5); Load a
building interior map, load the positions of Asset Points, load the positions
of Antennas, load positions of Anchors (georeference points), load the po-
sitions of the Pulse Points (ML Algorithms results representation) making
use of GeoJSON files; Display the lines of sight between Asset Points and
Antennas as well as the intersection points with walls on each line of sight
between Asset Points and Antennas; Animation of Asset Points with pre-
loaded custom moves (GeoJSON file); Add and remove Antennas or Anchors
on the map; Change the direction and opening angle of signal reception on
Asset Points / tags; Move Asset Points, Antennas and Anchors on the map;
Change the direction and opening angle of signal propagation of the Anten-
nas, Anchors and Asset Points; Display the pulse points animated with the
coordinates of the positions of the results of the various calculations (ML
Algorithms).

The main characteristics of backend module consist of: The Implemen-
tation of an MQTT client for communication; Map walls capture; Distance
calculation (between asset points and antennas); RSSI calculations (between
asset points and antennas); Calculation of the intersections of the antennas
signal propagation directions with the asset points sight lines; Implementa-
tion of an Orchestrator class (object that keeps all the information about the
system); Establishes the communication with the frontend and ML Agents
through the MQTT protocol using JSON messages.

An independent module called static-files includes all the static-files
used in frontend and backend modules, such as antennas datasets, config-
uration files, images, MQTT broker configuration files. Highlighting a set of
scripts of writing messages to files developed in Python language using sev-
eral tools and open source libraries. This is responsible for storing the data
from the calculations performed in the backend, that will be used by the
ML Agents, in the process of training and learning and validation of the ML
models. It was included as an utility script (static-files/utils module

5https://www.eclipse.org/paho/index.php?page=clients/python/index.php
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directory) and presents the main characteristics: the implementation of an
MQTT client for communication; Write the RSSI or number of activations
values calculated for all the antennas and the Asset Point position coordi-
nates (Longitude, Latitude) received, in .Comma-Separated Values (CSV)
format files. This is also the module where we can add different locations to
emulate results, by creating a folder with the name of the new location to be
included and adding its configuration files (GeoJSON files).

3. Modelling of real world RFID behavior

RSSI is a measure of the strength of a signal received by a device. An
RSSI-based localization algorithm follows the principle that a signal emitted
by a device gradually loses power as the distance at which it is propagated
increases, until it reaches a distance at which the signal naturally fades away.
The utilization of the RSSI data from several devices (converted to distance
from the transmitter) can be used to calculate the position through trilater-
ation or fingerprinting techniques. The correspondence that exists between
power and distance is the basis for establishing the localization. The decay,
in the overwhelming majority of cases, is not linear and much less uniform,
varying with the direction of propagation due to obstacle reflections or inter-
ference. The signal propagation itself is often influenced by external factors
such as temperature and humidity, which prevents it from being considered
constant over relatively large areas. Thus, the application of this type of
system implies a high measurement and modeling effort to the environment
in which they are implemented, which limits their use. The accuracy of the
system depends largely on the degree of extensiveness of the adaptation per-
formed, as well as the signal transmission power. The relationship between
RSSI values and distance is represented by the path loss model, defined by
equation Equation 1:

PL = PTxdBm
− PRxdBm

= PL0 + 10× γ × log10(
d

d0
) +Xg (1)

Where:
• PL is the total path loss in decibels (dB).
• PTx = 10× log10( PTx

1mW
) is the transmitted power in dBm where PTx is

the transmitted power in watts.
• PRx = 10× log10( PRx

1mW
) is the received power in dBm where PRx is the

received power in watts.
• PL0 is the path loss in decibels (dB) at the reference distance calculated
using Friis’ free-space path loss model.

• d is the path length.
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• d0 is the reference distance, usually 1 m (or 1 mile) for a large cell and
1m to 10m for a microcell.

• γ (or n) is the path loss exponent.
• Xg (or σ) is a normal (or Gaussian) random variable with zero mean,
reflecting the attenuation (dB) caused by fading.

From this association results the equation to calculate the RSSI, defined
in equation Equation 2.

RSSI = RSSI0 − 10× n× log10(
d

d0
) +Xg (2)

Where:
• RSSI0 is the signal strength measured in dBm, at distance d0.
• Multipath constant (n): Multipath or Path Loss Exponent causes
the signal to arrive in different ways at the device due to reflections,
diffraction and scattering, depending on the internal distribution such
as furniture, walls, objects, etc.

• Fading constant (Xg): Fading is the time variation of the received
signal. It depends on the environment and the movement of the devices.

For the usability tests of the tool, on the RSSI Path Loss model was
applied the empirical coefficient values for indoor propagation defined in
equation Equation 2, based on an “Office With soft partition” (Frequency of
Transmission = 900MHz):

• RSSI0 is the signal strength, at distance d0, estimated in -20 dBm.
• d is the path length between an antenna and an asset point calculated
by the backend module of the emulator;

• d0 is the reference distance, in this case for a microcell is 1 meter;
• n (or γ) is the path loss exponent, with coefficient estimated in 2.4;
• Xg (or σ) is a normal (or Gaussian) random variable with zero mean,
reflecting the attenuation (dB) caused by fading, with coefficient esti-
mated in 9.6.

The module was adapted to also support another type of data sent by
the emulator. Instead of using the RSSI data generated by the known num-
ber of antennas located at the various points of the building to generate the
coordinates and return them to the frontend module, the “Predictor” uses
the data related to the number of activations of each tag. This feature was
selected, as it demonstrated a good capability to track tag distance to the
antenna, or at least at par with RSSI. In this way, a set of experimental data
was collected from real hardware consists of an Antenna RF and RFID pas-
sive tags from 0.5 meters until 10.0 meters with steps of 0.5 meters, applying
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power scans at 280, 290, and 300 mW. The dataset was included as a look up
table data that correlate the number of activations with the distance between
an Asset Point and an Antenna RF, emulated in system. The emulator will
estimate the number of activations in the backend module made use of the
features explicit in configuration file.

The models developed which use the number of activations recorded on
an antenna to estimate its distance from the asset. Since the Predictor

is responsible for returning the geographic coordinates (2 dimensions, Lati-
tude and Longitude) of the asset, it was necessary to develop a method to
translate the distance relative to an antenna (1 dimension) returned by the
ml-models module. This method defines the asset point coordinates based
on the antenna’s coordinates, direction line and the distance calculated by
the algorithms (see Equation 3 and Equation 4).

assetlongitude = antennalongitude − sin(antennaangle)× distance (3)

assetlatitude = antennalatitude + cos(antennaangle)× distance (4)

Where:
• assetlongitude, assetlatitude and antennalongitude, antennalatitude represent
the longitude and latitude coordinates (in meters) of the asset and
antenna points respectively.

• antennaangle is the angle of the antenna’s direction (North = 0°) and
distance is the distance between the asset and the antenna.

Due to certain limitations of the tested hardware (antenna RF and passive
RFID tags), it was defined that values higher than 10 metres would not be
calculated.

4. Use Case and Results

In order to create synthetic data concerning the number of tag activation
events, an interpolation was made based on the results obtained in experi-
mental data acquisition procedure from 0 meters until 10 meters, in which
anchors were used and activation numbers were recorded at a greater distance
(up to 9m) than in the other experiments. The interpolation was applied to
each value of the 3 selected powers (280, 290 and 300 mW) and was based
on the reverse sigmoid function, which fits the behaviour observed in the ex-
perimental data acquisition procedure, and was set to 0 after 10m as it was
observed in the experiment. The One-Class SVM outlier detect algorithm
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was also applied for outlier detection and removal using the Scikit-learn li-
brary 6. A method of generating synthetic noise from the standard deviation
recorded in same experiment was also added, resulting in more credible and
realistic data. An interpolation result based on the reverse sigmoid function
was applied on the number of activation events recorded in the experimental
data acquisition procedure.

These initial results where explored further in the following work [35].

5. Illustrative Examples

The Figure 2 present the emulator Graphical User Interface (GUI), after
the connection with MQTT Broker is established, show all the selected ML
models, including the graphic and textual visualization of the positioning
calculations. One Asset Point, ten Antennas and all the five ML models
results are disposed in the map.

Figure 2: Emulator GUI, accessed on Computer browser, presenting the moment after the
connection is established, all the selected ML models, including the graphic and textual
visualization of the positioning calculations.

The map presented in the emulator is a 2D representation of the 2nd floor
of University of Aveiro Library, and it was obtained through the drawing of
the official plan of the building. This space is presented as a base example for

6https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
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validation of the developed tool. It was chosen because it is a public space
whose floor plan is of general access to the community. Other spaces can
be included in the emulator, through previous configuration by including the
files of a new place previously created and updating the execution code of
the tool. Because we use open formats (GeoJSON), any custom map can be
added to the tool. Actually, even outdoor maps can be used, although that
was not extensively explored by the authors.

Following we describe the graphical emulator elements that allow the user
to interact with the developed tool:

• In the upper left corner there are the connect and disconnect but-
tons to the MQTT broker. The connect button opens an MQTT con-
nection data parameterization panel. The disconnect button only dis-
connects the session once established.

• In the upper right corner there is the tools zone, including search,
navigation, zoom, rotation, add and remove asset points, add and re-
move antennas, add and remove reference points (anchors).

• In the lower left corner there is a set of buttons for interaction with
the session, including one to show Asset Points coordinates, another
to show Distances and RSSI values calculated for the Antennas where
two panels are displayed with that information. In the case of the
Antennas information, this is only displayed after the connection is
established. It also includes a button to open and close the animation
options panel of the Asset Point, another to display the ML agent
selection panel, another to open the parameterization panel of the data
needed for the RSSI calculations using the path-loss model, and finally
a button to open and close a debug console, with all the printed session
information.

• In the lower right corner a static legend of the active map elements
is displayed.

6. Impact

The Expandable Indoor Location Emulator For Machine Learning Models
demonstrates a consistent approach, that couples multiple services together,
and simplifies the process of acquiring synthetic data of RSSI measurements
using RFID tags, based on a real world approach for an indoor location
environments. The data model and data flow as well as the tool itself can
be easily extended to include another set of machine learning data models or
interactions with new services.

13



The integration, made through a message broker, allows mixed scenarios,
with real devices or software components, interacting together on the same
environment. This facilitates training of models with larger datasets, and
the integration and development of components, every time that access to
real devices is somewhat limited on constrained.

Having a web visualization frontend will also facilitates the development
of ML solutions as it allows researchers to both view and control assets in
real time. It also becomes possible to assess the quality of the ML esti-
mators directly on map, which is extremely useful in early stages of model
development.

The tool was implemented as part of the EU funded research project
“SDRT Health” solution which consists of the development of a new, more
advanced antenna system, which will be supported on an Software Defined
Network (SDN) system with Artificial Intelligence (AI) that will reduce the
overall Radio-Frequency (RF) emission with smaller antennas and with less
impact, applied in a context of management of health systems, seeking to
improve resource management performance indicators.

7. Conclusions

In this paper, the Expandable Indoor Location Emulator For ML Models
has been described - an open-source web tool for the application, study,
and evaluation of a set of real characteristic factors, that help to assemble,
test and validate solutions to predict location accuracy provided by Machine
Learning models to RSSI standards for passive RFID scenarios, applied to a
context of improving performance indicators of health management systems,
to serve hospitals and clinic centers. It enable users to upload routes of
indoor map locations, simulate patients / staff movements. The module-
based approach has been applied to describe the data model in emulator and
automate the process of synthetic data acquisition data. Furthermore, a set
of tests has been employed to validate the tool.
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